09.Reduction of the Hodgkin-Huxley model type II

Reduction of the Hodgkin-Huxley model type II

Another way of approximation, compare to two phase analysis

Reduction

  • Hodgkin and Huxley model:
  • SRM: $ u(t) = \eta(t-\hat t) + \int_0^{t-\hat{t}} \kappa(t-\hat t_i,s) I^{ext}(t-s) ds+u_{rest} $ we need to define $\eta(t-\hat{t})$, $\kappa(t-\hat{t})$, $\vartheta$
  • $\eta(t-\hat{t})$ action potential is stereotyped when triggered the spike In Hodgkin-Huxley model, let: we can get $u(t)$, then use $u(t)$ to get $\eta(t-\hat{t})$

  • $\kappa(t-\hat{t})$ weak input current, slight perturbed Input: strong plus at $\hat{t}$, weak plus at $t$, $(t>\hat{t})$

  • $\vartheta$ threshold for spike fixed use different value in different cases

Scenarios

time-dependent input

the metrics: $\langle{N_{coinc}\rangle}=2\nu\Delta{N_{full}}$ $C=1-2\nu\Delta$
if Possison process: if two model fit perfect: if $\kappa$ does not depend on last firing time, $\Gamma$ will be lower (lower accuracy)

constant input

different $\vartheta$ make big differences

step current input

same three zones also show inhibitory rebound

spike input

use $\epsilon $ to substitute external input: $u_i(t)=\eta(t-\hat{t_i})+\sum\limits_{j}w_{ij}\sum\limits_{f}\epsilon(t-\hat{t_i},t-t_{j}^{(f)})+u_{rest}$

Reduction of a cortical neuron

type I SRM can also be used as a quantitative model of cortical neurons. cortical neurons has continuous gain function

Reduction to a nonlinear integrate-and-fire model

Reduction

first step

define:

  • $\vartheta$
  • $\Delta_{abs}$
  • $u_{r}$
  • $m_{r}$
  • $h_{r}$
  • $n_{slow}$
  • $n_{fast}$

we get multi integrate and fire model

second step

  • fast variables: replace with steady state values (function of u)
  • slow variables: replace with constant $m \rightarrow m(u)$ $n_{fast} \rightarrow n_{0,fast}$ $n_{slow} \rightarrow n_{slow, average}$ $h \rightarrow h_{average}$

we get nonlinear integrate and fire model

Scenarios

constant input

fluctuating input

Reduction to SRM

Reduction

aim: find $\eta$, $\kappa$, $\vartheta$

first step

reduce the model to and integrate-and-fire model with spike-time-dependent time constant

second step

integrate the model, get $\eta$ and $\kappa$

third step

choose appropriate spike-time-dependent threshold $\vartheta$

Scenarios

constant input

better with dynamic threshold

fluctuating input

the accuracy is more stable than nonlinear integrate-and-fire model

Limitations

  • even $\Gamma$ of the multi-current integrate-and-fire model is far below 1
  • time-dependent threshold of SRM is import to achieve generalize over a broad range of different inputs
  • time-dependent threshold seems to be more important for the random-input task than the nonlinearity of function $F(u)$
  • in the immediate neighborhood of the firing threshold, nonlinear integrate-and-fire model performs better than SRM
comments powered by Disqus